
Are “Embedded Systems" Just Systems
Made with Small Computers?

Chess: Center for Hybrid and Embedded Software Systems

Artist International Collaboration Days
Education Day
In conjunction with EMSOFT
Philadelphia, PA, Oct 11, 2003

Edward A. Lee
Professor
UC Berkeley

UC Berkeley, Edward Lee 2

Abstract
Occasionally I hear the argument that embedded computing is just computing with extreme resource limitations,
where key resources are memory and CPU cycles. By this argument, embedded computing does not constitute a new
discipline, since optimizing resource usage has always been a part of computer science.

Traditional EE systems theory, including signal processing and control, is often a good match for the application
domains of embedded systems. Moreover, this theory has steadily been evolving towards software-based
realizations, for example with the emergence of hybrid systems theory in the control systems community.
Therefore it is arguable that embedded systems is just an evolutionary outgrowth of these disciplines, and again
does not constitute a new discipline.

In this talk, I will argue that the traditional CS theory of computation and traditional EE systems theory both fail
to effectively model embedded systems.

Traditional EE systems theory offers powerful analytical techniques for proving "correctness" of systems, for
example by demonstrating that designs are stable. However, when these designs are realized in software, often the
"correctness" proofs are no longer formally valid, and engineers have to resort to bench testing to validate
behavior. Implementations of discrete time systems under an RTOS, or worse, under a non-real-time operating
system, no longer have the formal structure assumed by the analytical tools. For example, how should an engineer
choose priorities for tasks, or whether processes should be preempted by higher priority processes? How should an
engineer assess the effect of asynchronous events or mode changes? The theory breaks down, and the engineer is
stuck with guesswork.

Unfortunately, the standard engineering curriculum cements this flaw. Courses in signals and systems, controls, and
communications systems rely heavily on frequency-domain techniques, transforms, and linear systems theory. The
beauty and richness of the subject, particularly compared to the relatively immature fields of hybrid systems
analysis and embedded software design, seduces instructors to weave an ever more elaborate fiction. Real systems
aren't like that, but this theory is so pretty, that we do it anyway.

In this talk, I will show how we can begin to adapt the traditional EE systems curriculum to embrace the real world
of software. First, we have to show that even non-linear systems have formal structure. Next, the theory of hybrid
systems shows how to leverage the theory of linear systems when the violations of the linear hypothesis are
through mode changes. Finally, concurrent models of computation are available that enable the specification of
software that is assured of meeting the assumptions of the formal framework. These cannot be based directly on
the rather weak abstractions of threads, processes, priorities, preemption, and synchronization. They are based,
instead, on synchronous and time-driven languages.

UC Berkeley, Edward Lee 3

Platforms

A platform is a
set of designs.

Relations
between
platforms
represent design
processes.

big gap

UC Berkeley, Edward Lee 4

Progress

Many useful
technical
developments
amounted to
creation of new
platforms.

• microarchitectures
• operating systems
• virtual machines

UC Berkeley, Edward Lee 5

Recent
Action

Giving the red
platforms useful
modeling properties
(e.g. verification,
UML, MDA)

Getting from red
platforms to blue
platforms (e.g.
correctness,
efficiency)

UC Berkeley, Edward Lee 6

Desirable
Properties

From above:
• modeling
• expressiveness

From below:
• correctness
• efficiency

UC Berkeley, Edward Lee 7

Model-Based
Design

Model-based
design is
specification of
designs in
platforms with
“useful modeling
properties.”

UC Berkeley, Edward Lee 8

“Useful Modeling Properties”
for Embedded Systems

Example: Control systems:
• Continuous dynamics
• Stability analysis

UC Berkeley, Edward Lee 9

Discretized Model
A Step Towards Software

• Numerical integration techniques provided sophisticated ways to get
from the continuous idealizations to computable algorithms.

• Discrete-time signal processing techniques offer the same
sophisticated stability analysis as continuous-time methods.

• But it’s not accurate for software controllers (fails on correctness)

UC Berkeley, Edward Lee 10

Hybrid Systems –
Union of Continuous & Discrete

Suffers from problems with
• modeling
• expressiveness
• correctness

E.g. Consider building a
hybrid system model for
software running under a
multitasking real-time OS.

UC Berkeley, Edward Lee 11

The Timing of Software is the
Wrong Thing to Model

An example, due to Jie Liu, has two
controllers sharing a CPU under an RTOS.
Under preemptive multitasking, only one
can be made stable (depending on the
relative priorities). Under non-preemptive
multitasking, both can be made stable.

Where is the theory for this?

RTOS’s are the wrong
platform for embedded
software design.

UC Berkeley, Edward Lee 12

Better
Platforms

Platforms with
modeling
properties that
reflect
requirements of
the application,
not accidental
properties of the
implementation.

UC Berkeley, Edward Lee 13

How to View This Design

From above: Signal flow graph with linear,
time-invariant components.

From below: Synchronous concurrent
composition of components

UC Berkeley, Edward Lee 14

Embedded
Platforms

The modeling
properties of
these platforms
are about the
application
problem, not
about the
implementation
technology.

UC Berkeley, Edward Lee 15

Embedded
Platforms

The modeling
properties of
these platforms
are about the
application
problem, not
about the
implementation
technology.

UC Berkeley, Edward Lee 16

Embedded
Platforms

Actor oriented
models compose
concurrent
components
according to a
model of
computation.

UC Berkeley, Edward Lee 17

Education Changes
The Starting Point at Berkeley

Berkeley has a
required sophomore
course that
addresses
mathematical
modeling of signals
and systems from a
computational
perspective.

The web page at the
right illustrates a broad
view of feedback, where

the behavior is a fixed
point solution to a set of

equations. This view
covers both traditional

continuous feedback and
discrete-event systems.

The textbook

UC Berkeley, Edward Lee 18

Themes of the Berkeley Course

• The connection between imperative
and declarative descriptions of
signals and systems.

• The use of sets and functions as a
universal language for declarative
descriptions of signals and
systems.

• Concurrent state machines and
frequency domain analysis as
complementary tools for designing
and analyzing signals and systems.

• Early and often discussion of
applications, with MATLAB and
Simulink design for laboratory
experimentation.

Brain response when seeing a
discrete Fourier series.

UC Berkeley, Edward Lee 19

Conclusion

• The distinction between modeling and
design is narrowing

• We can teach system theory with a
connection to computation

From above: modeling, expressiveness

From below: correctness, efficiency

